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INTRODUCTION

Cyanide (CN) has been used as an offensive weapon during wartime, and largely
due to its rapid toxicity onset, cost, relative ease of manufacture, and the varied methods
of application, CN remains a viable threat as a chemical warfare agent (Compton, 1987;
United States Senate Hearings, 1989; McKay and Vogel, 1992). One strategy to counter
CN toxicity is to administer compounds that form methemoglobin (MHD), either as a
prophylactic or as a treatment after poisoning. Although MHDb cannot transport oxygen,
properly monitored induced (i.€., acquired) methemoglobinemia can be effective in
mitigating and/or reversing CN effects (ATSDR, 1993).

Clinical and experimental evidence document that sodium nitrite (NaNO,) is an
efficacious MHb former commonly used to counter CN toxicity (Hug, 1933a,b; Wendel,
1933, Chen et al., 1934). However, Kiese and Weger (1969) measured MHD levels in
humans treated intravenously with the recommended dose of NaNO; (4.0 mg/kg). They
reported an average peak MHD level of 7%, a level they considered too low to effectively
counter CN toxicity (see also Frankenberg, 1982 and Canfield et al., 1987). Furthermore,
this peak value of MHb was not observed until approximately 30 min postinjection (Kiese
and Weger, 1969). Finally, cardiac perturbations (Kiese and Weger, 1969) and vasomotor
collapse (Weiss et al., 1937) have been observed in humans following NaNO,
administration. A safer and perhaps faster acting MHDb former is, therefore, indicated.

As part of an attempt to identify an alternative to NaNO, three MHb-forming
phenones (p-aminopropiophenone, PAPP; p-aminoheptanoylphenone, PAHP; and p-
aminooctanoylphenone, PAOP), previously shown to be efficacious against CN (Table 1;
also see Scharf et al., 1992), were studied in mice.

The pattern of MHb produced by PAPP, PAHP and PAOP, as well as by NaNO,
was evaluated as a function of time, dose and route of administration. In addition, since
the MHb molecule cannot transport oxygen, locomotor activity was examined in separate
groups of mice as a gross indicator of functional integrity.

MATERIALS AND METHODS

GENERAL

Male CD-1 Swiss mice (20-37 gm) served as subjects, and were maintained under
an AAALAC-accredited animal care and use program. Prior to experimentation, animals
were housed in polycarbonate cages in a temperature- (22° + 2°C) and humidity-
controlled (40-70%) housing facility with a 12-hr light/dark lighting cycle with no
twilight. Food and water were available ad libitum until testing commenced.

METHEMOGLOBIN STUDIES

Each animal received a single intramuscular (IM) or intraperitoneal (IP) injection of
PAPP, PAHP or PAOP. Positive controls received an IM or IP injection of sodium nitrite,
whereas negative controls received an IM or IP injection of vehicle only (see Table 2).

Blood samples (40 FI) were obtained from the tail of each subject at -2, +2, +15,
+30, +60, +120, and +180 min relative to injection. The first sample provided baseline
information. Subsequent time points were selected to encompass anticipated time of
action of the test compounds and to provide an adequate number of intermediate
measurements for ascertaining temporal patterns of MHb formation. Each sample




TABLE 1. Efficacy of the phenones against a 2 X MLD CN challenge. * p< 0.05 vs. 0.0 mg/kg

controls.
TREATMENT DOSE SURVIVAL'
CONDITION mg/kg — -
15 min 60 min
PAPP Positive Control® - 10/10°
0.0* 1/10 0/10
9.4 9/10° 0/10
11.7 10/10° 0/10
37.5 10/10° 9/10°
150.0 8/10° 10/10°
PAHP Positive Control . 10/10°
0.0 1/10 0/10
15.6 10/10° 4/10°
62.5 9/10 10/10°
250.0 2/8 2/8
PAOP Positive Control - 10/10°
0.0 1/10 0/10
7.5 0/10 0/10
13.0 3/10 0/10
30.0 10/10° 10/10°
52.5 10/10° 10/10°
120.0 10/10° 7/10°
2100 510 510"

! Survival was determined 24 hr after CN exposure.

Compounds were administered IP, 15 min or 60 min prior to CN exposure.
3 Animals serving as positive controls received sodium nitrite (100 mg/kg) and sodium thiosulfate (1000 mg/kg),
. co-administered 60 min prior to CN exposure.

0.0 mg/kg control animals (i.e., negative controls) received the appropriate solvent only.

was analyzed for MHDb using an OSM3 Hemoximeter (Radiometer America, Inc.,
Westlake, OH). For each compound separate analyses were performed for IM and IP
groups. In addition, for each compound and its respective vehicle, a repeated measures
analysis of variance (ANOVA) was performed (dose X time), with time as the repeated
measure. Simple main effects analyses and/or Newman-Keuls tests were performed as
appropriate. All tests were considered statistically significant at the P < 0.05 level.

LOCOMOTOR ACTIVITY STUDIES
Each phenone-treated animal received a single IM or IP injection of PAPP, PAHP or
PAOP, as available. Positive controls received an IM or IP injection of sodium nitrite,
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whereas negative controls received an IM or IP injection of vehicle only (see Table 2).
Immediately following injection, and continuing for 60 min, activity was monitored
in 12 5-min blocks) in individual test chambers interfaced with a Digiscan Analyzer
Omnitech Electronics, Inc, Columbus, OH). For each compound separate analyses were
performed for IM and IP data. In addition, for each compound and its respective vehicle,
a repeated measures ANOVA was performed (dose X time), with time as the repeated
measure. Newman-Keuls were conducted as appropriate. All tests were considered
statistically significant at P < 0.05.

TABLE 2. MHb-forming compounds administered IM or IP in mice. Injection volume was 0.5 ml/kg for
IM and 1.0 ml/kg for IP. For MHb studies, N = 5-19/group; for locomotor activity studies, N = 5-8/group.
Note that not all dose/route combinations were assessed in each experiment.

COMPOUND  VEHICLE DOSE (mg/kg)
PAPP 5% EtOH/PEG 200 9.4,11.7,18.8,37.5
PAHP 5% EtOH/PEG 200 15.6,31.2, 62.5, 125.0
PAOP PEG 200 30.0, 45.0, 52.5, 60.0, 90.0
NaNO; SALINE 100.0
RESULTS

Animals treated with PAPP (IM, IP), PAHP (IP) or PAOP (IP) exhibited large
(>15%) and time- and/or dose-related increases in MHb. This observation was supported
by a significant dose X time interaction. However, animals treated IM with PAHP or
PAOP exhibited a small (<8%) but statistically significant dose-related increase in MHb
or no significant changes in MHDb, respectively (see Figure 1). Observed MHb changes
were typically longer lasting following injections of PAHP (IM, IP) or PAOP (IP), as
compared with injections of PAPP (IM, IP) (see Figure 1).

For the locomotor activity studies, all groups showed a significant decrease in
locomotor activity as a function of time. This was supported statistically by a significant
main effect of time. However, the phenones did have measurable effects on locomotor
activity. Independent of test compound, when corresponding MHDb levels exceeded 20%,
a statistically significant hypoactivity was generally observed (see Figures 2-6). This was
supported by the significant dose X time interaction. The hypoactivity was evident
beginning approximately 10 min postinjection. Thus, significant hypoactivity was
observed for PAPP (IM and IP) at 18.8 mg/kg and 37.5 mg/kg, and for PAHP (IP only), at
15.6 mg/kg and 31.2 mg/kg. For PAOP (IP only), at 30 mg/kg, there was a trend for
hypoactivity, but this was not statistically significant. For the NaNO; positive control
animals, signficant hypoactivity was also observed (see Figure 6). Groups in which
corresponding MHDb levels were below 20% generally exhibited normal activity, although
there was a nonsignificant trend of hyperactivity in PAHP and PAOP animals treated IM
(see Figures 2-5).




DISCUSSION

The MHb forming phenones PAPP, PAHP and PAOP each provide dose-related
protection in mice against a 2 X MLD CN challenge (Table 1; see also Scharf et al.,
1992). In the present study, hypoactivity was observed, but only when MHb exceeded
20%. These data support the contention that efficacious doses of these compounds, which
lead to less than 20% MHD, are not behaviorally disruptive. Interestingly, it has been
reported that in humans, oxygenation of working muscle is impaired when MHb levels
exceed 20% (Tepperman et al., 1946), although Paulet et al. (1963) reported no ill-effects
of doses of PAPP generating up to 48% MHDb.

Furthermore, the pattern of protection produced by these phenones, combined with
the time-course MHD data, is consistent with the notion that MHb formation is necessary
for these compounds to be effective against CN. For NaNO,, the observed hypoactivity is
generally consistent with previous reports in rabbits (Haldane et al., 1897) and rodents
following either injections (Freeman et al., 1986; Hlinak and Krejci, 1990) or
administration via drinking water (Gruener and Shuval, 1972).

Interestingly, when MHDb levels remained below 20%, either no changes in activity
or trends of mild hyperactivity were observed. The hyperactivity, however, was limited to
those groups of animals in which little or no MHb was detected (i.e., PAHP or PAOP,
administered IM). Indeed, phenone carbon chain-length and route of administration were
critical variables associated with specific effects on MHb formation and related changes
in locomotor activity. The phenones PAPP and PAHP each produced significant, dose-
related MHb and locomotor hypoactivity when administered IP. In addition, a trend for
locomotor hypoactivity was observed for PAOP administered IP, but this was not
statistically significant. However, the longer the carbon chain, the less likely it was that
IM-treated animals would exhibit significant MHDb levels and concurrent locomotor
hypoactivity. This observation deserves further attention, since there is apparent drug
sequestration or another mechanism operating by which these compounds are not readily
available when administered via the IM route. Finally, hematologic effects other than
changes in MHb must also be taken into consideration, such as oxyhemoglobin,
sulfhemoglobin, reduced hemoglobin and oxygen content (Rockwood et al., 1996).
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Figure 1b. MHD levels in mice treated with PAHP, as of function of dose,

time and route of administration.
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Figure 2. Locomotor activity levels in mice treated IM with PAPP

as a function of dose and time. These data are representative of PAPP-

induced hypoactivity. IP data are similar. MHb levels of similarly

treated animals are also shown.
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